Automata groups generated by Cayley machines of groups of nilpotency class two

نویسندگان

چکیده

We build presentations for automata groups generated by Cayley machines of finite nilpotency class two and prove that these are all cross-wired lamplighter groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cayley graphs of finitely generated groups

There does not exist a Borel choice of generators for each finitely generated group which has the property that isomorphic groups are assigned isomorphic Cayley graphs.

متن کامل

On the nilpotency class of the automorphism group of some finite p-groups

Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.

متن کامل

Automorphism groups of Cayley graphs generated by connected transposition sets

Let S be a set of transpositions that generates the symmetric group Sn, where n ≥ 3. The transposition graph T (S) is defined to be the graph with vertex set {1, . . . , n} and with vertices i and j being adjacent in T (S) whenever (i, j) ∈ S. We prove that if the girth of the transposition graph T (S) is at least 5, then the automorphism group of the Cayley graph Cay(Sn, S) is the semidirect p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Algebra and Computation

سال: 2021

ISSN: ['0218-1967', '1793-6500']

DOI: https://doi.org/10.1142/s0218196721500430