Automata groups generated by Cayley machines of groups of nilpotency class two
نویسندگان
چکیده
We build presentations for automata groups generated by Cayley machines of finite nilpotency class two and prove that these are all cross-wired lamplighter groups.
منابع مشابه
Cayley graphs of finitely generated groups
There does not exist a Borel choice of generators for each finitely generated group which has the property that isomorphic groups are assigned isomorphic Cayley graphs.
متن کاملOn the nilpotency class of the automorphism group of some finite p-groups
Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.
متن کاملAutomorphism groups of Cayley graphs generated by connected transposition sets
Let S be a set of transpositions that generates the symmetric group Sn, where n ≥ 3. The transposition graph T (S) is defined to be the graph with vertex set {1, . . . , n} and with vertices i and j being adjacent in T (S) whenever (i, j) ∈ S. We prove that if the girth of the transposition graph T (S) is at least 5, then the automorphism group of the Cayley graph Cay(Sn, S) is the semidirect p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Algebra and Computation
سال: 2021
ISSN: ['0218-1967', '1793-6500']
DOI: https://doi.org/10.1142/s0218196721500430